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Abstract
We explore the task of optimal quantum channel identification and in particular,
the estimation of a general one-parameter quantum process. We derive new
characterizations of optimality and apply the results to several examples
including the qubit depolarizing channel and the harmonic oscillator damping
channel. We also discuss the geometry of the problem and illustrate the
usefulness of using entanglement in process estimation.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

Recent experimental progress in quantum information processing has highlighted the
importance of quantum control and, in particular, the task of system identification. For
example, it is essential for the verification of quantum gates to be able to effectively identify
quantum processes. This identification might require a full process tomography, but quite
often an estimation of a number of free parameters may be sufficient to determine the proper
operation of a gate. In such cases, it is obviously beneficial to use optimal schemes to estimate
the free parameters. With that motivation, we consider the problem of optimally estimating
a quantum process with one free parameter. Figure 1 represents a schematic of the problem.
The goal is to identify an input state and a measurement scheme that will permit one to gain
the most informaiton about the free parameter. We will make these notions more precise in
what follows.

The field of quantum parameter estimation is concerned with the methods of estimating—
especially optimally estimating—properties of quantum states or processes. The field has a
fairly short but rich history, beginning with the pioneering work of Helstrom [1] and Holevo [2]
and has recently seen a rise in interest, especially from the quantum information community.

The task of estimating quantum states has an enormous literature dedicated to it (a small
sample is [3–7], and for a recent review see [8]). There are several notions of optimality in this
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Figure 1. The estimation procedure.

scenario and some of them highlight the essential connection between the optimal estimation
problem and the geometry of the space of quantum states [3, 9]; the statistical distinguishability
of states induces a unique metric (the Fisher metric) on the space of quantum states [3, 10].
This is a pleasing state of affairs, which although not of much practical use (it cannot be used
to identify optimal estimation strategies except in some special cases [11]) is tremendously
edifying.

In contrast, parameter estimation for quantum processes is an area that is far less developed.
The estimation of unitary quantum processes has been examined by a number of authors over
the past few decades [1, 2, 4, 11, 12]; in these treatments, the system evolves unitarily and the
parameters to be estimated are unknown parameters of this unitary. However, the general form
of the problem, where the evolution is a general quantum operation, has received considerably
less attention. Some recent treatments of special cases of this more general problem are given
in [13–15].

One way to attack the problem of optimal quantum process estimation is to treat it as
an optimal state estimation problem where the states under consideration are restricted to the
parametrized (by the parameters of the process) set of output states of the quantum process.
This is a practical point of view which recognizes that the only operational access to the
parameters of the process is through probe input states that are measured at the output of
the process (see figure 1). This approach breaks the process parameter estimation into two
parts: the choice of an optimal input state and the choice of an optimal estimation scheme
for the parametric family of output states {Eθ (ρ0)}θ . Such an approach has been taken in the
past (e.g. [13]), but with the dynamics of the process (or equivalently, the dependence of the
output parametric family on the parameters of the process) being represented by rather abstract
superoperators such as the symmetric logarithmic derivative [3]. The disadvantage of using
such a representation is that explicit expressions for such superoperators are often difficult to
calculate.

The aim of this paper is to use the same approach to the estimation of quantum processes,
but to use a more common representation for them. In particular, we assume that the
Kraus representation (operator sum decomposition) of the quantum process is given, with
the parameters to be estimated being free parameters of the Kraus operators. We consider
the simplest quantum process estimation problem in this general setting: the estimation
of a one-parameter, trace-preserving quantum operation and investigate the advantages and
disadvantages of using the Kraus representation to describe the process. We assume that
the input state remains fixed and optimize over the estimation scheme to arrive at a measure
of optimality. The measure is non-unique and non-constructive (it does not allow one to
deduce the optimal POVM), primarily due to the non-uniqueness of the Kraus representation.
However, for a special family of quantum channels we show that it can be used to test the
optimality of an estimation scheme. We also discuss the geometry of the problem and apply
the results to several examples, including one which illustrates the value of using entanglement
to increase the statistical distinguishability of quantum processes.
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The paper is organized as follows: section 2 covers some preliminary concepts and sets the
notation. Section 3 derives the optimality conditions for the estimation scheme and discusses
them. Then we consider several examples in section 4 and finally conclude in section 5.

2. Preliminaries

2.1. Quantum operations

Given two Hilbert spaces, H1 and H2, with dimensions d1 and d2 respectively, a quantum
operation E: HT

1 → HT
2 is a completely positive linear map between trace-class operators in

H1 and H2(HT
i is the space of trace-class operators acting on Hilbert space Hi; dimHT

i = d2
i ).

These maps represent the most general transformations between two density operators in
quantum mechanics. The complete positivity of the map is a physically motivated and highly
restrictive condition; however, there is a well-known representation of such maps originally
due to Choi [16] and then popularized by Kraus [17], called the operator sum decomposition or
the Kraus decomposition. This decomposition represents the action of the map E: HT

1 → HT
2

as

ρ̃ ≡ E(ρ) =
∑

k

ϒkρϒ
†
k , (1)

where ρ ∈ HT
1 and ρ̃ ∈ HT

2 . The operators ϒk: H1 → H2 are called the Kraus operators of
the decomposition. The sum in this decomposition can run over an infinite set, but in general
E can be represented using at most d1d2 Kraus operators [18]. In this paper we will restrict
our attention to trace-preserving quantum operations between isomorphic Hilbert spaces (i.e.
d1 = d2 = d). The trace preservation implies that the Kraus operators satisfy a normalization
condition: ∑

k

ϒ
†
kϒk = Id, (2)

where Id is the d-dimensional identity operator. Of course, for a closed quantum system
undergoing unitary evolution, there is only one Kraus operator in the decomposition and it is
unitary, i.e. E(ρ) = VρV † with V †V = Id .

An important property of this decomposition is the non-uniqueness of the Kraus operators.
A new set of Kraus operators for the same quantum operation can be derived by an arbitrary
unitary remixing of the original set. That is, if {ϒk}N1 are the Kraus operators in a decomposition
of E , then the set {�j }N1 :

�j =
N∑

k=1

ujkϒk, (3)

where ujk are the elements of a unitary matrix, is the Kraus operators for a different, but
equivalent, operator sum decomposition of E . This non-uniqueness will become important
when we describe the estimation of quantum operations in terms of their Kraus operators; in
particular, a specific decomposition, called the canonical decomposition, will be important.
The canonical decomposition is a distinguished Kraus decomposition that can be constructed
with respect to any given input state with the following property: E(ρ) = ∑

k ϒkρϒ
†
k with

tr
(
ϒ

†
kϒjρ

) = δjkpk . Trace preservation implies
∑

k pk = 1. The explicit construction of
these Kraus operators is detailed in [19]; however, for our purposes the important thing to note
is their dependence on the input state—if the input state changes, the Kraus operators in the
canonical decomposition for a given quantum process will change.
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Now we describe an important interpretation of quantum operations. By the postulates of
quantum mechanics, a closed quantum system will undergo unitary evolution. Any departure
from such an evolution is caused by coupling of the system to additional degrees of freedom
(usually termed the environment). Therefore, any non-unitary quantum operation is the
effective description of the evolution of a quantum system that is coupled to an environment.
This leads us to think of a quantum operation, acting on a system of interest, as a unitary map
of the system plus some environment (which combined form a closed system) after which the
environment is traced out [18]. That is,

E(ρ) = trenv[U(ρ ⊗ ρenv)U
†], (4)

where ρ is a density operator for the system and ρenv is a density operator for the environment.
U is a unitary operator acting on both the system and the environment. This is sometimes
referred to as the dilation of the quantum operation. Now, assuming that {|ek〉} is a complete
orthonormal basis for the state space of the environment and the initial environment state is
ρenv = |e0〉〈e0|, then the Kraus decomposition of E can be written explicitly by performing
the trace in this basis:

E(ρ) = trenv[U(ρ ⊗ ρenv)U
†]

=
∑

k

〈ek|U [ρ ⊗ |e0〉〈e0|]U †|ek〉

=
∑

k

ϒkρϒ
†
k ,

(5)

where ϒk = 〈ek|U |e0〉 is an operator acting only on the system subspace. The unitary freedom
in the choice of the Kraus operators is exactly the same as the unitary freedom in choosing
the environmental basis states in which to perform the trace. The assumption of a pure initial
state for the environment is not very restrictive because we can always choose the environment
to be large enough so that this condition is met. The other assumption, that the initial state
is separable, is a much more subtle one and a full discussion of it is out of the scope of this
paper. It has been extensively discussed in the literature, and we refer the interested reader to
the recent treatment in [20].

2.2. Optimal estimation

We are concerned with optimally estimating a one-parameter quantum operation, Eθ . We
assume that we have available an operator sum decomposition of the operation, but that the
Kraus operators have a free real, continuous parameter, θ , which is to be estimated:

ρ(θ) ≡ Eθ (ρ0) =
∑

k

ϒk(θ)ρ0ϒ
†
k (θ), (6)

with
∑

k ϒk(θ)†ϒk(θ) = Id . Here, ρ0 ∈ HT (dimHT = d2) is the input state to the operation
over which we have complete control. A schematic of the estimation process is given
in figure 1. In each run of the experiment, the input state ρ0 is fed into the quantum
operation and a generalized measurement is performed on the output. The generalized
measurement is described by non-negative, Hermitian operators E(ξ), or POVMs, which
satisfy the completeness property:

∫
dξE(ξ) = Id . ξ labels the result/s of the measurement

and can be univariate or multivariate as well as continuous or discrete (in the discrete case,
the completeness integral becomes a sum). Given such a description of the measurement,
the probability density for the measurement result, conditioned on a given state is given
by p(ξ |θ) = tr(E(ξ)ρ(θ)). We will assume that there are N independent runs of this
experiment after which the parameter θ is estimated using the results of N independent,
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separable measurements on N outputs from the channel. That is, θest = θest(ξ1, ξ2, . . . , ξN).
The estimator T is any function of the N measurement outcomes, and it attempts to reconstruct
θ from these outcomes. We will assume that the estimator, T, is unbiased. That is, Eθ {θest} = θ

where Eθ {·} is the expectation value with respect to the probability distribution for θ . This is
a mild assumption that will not affect the essential results. An example of an estimator (which
is unbiased also) is the sample mean: m̄ = 1/N

∑N
i=1 xi , which is an estimate of the true

mean of the probability distribution that xi are drawn from.
This is a very general setting in which to describe parameter estimation. We can account

for scenarios such as entanglement-assisted estimation by simply changing the definition of the
quantum operation to be a tensor product of two or more operations. We will see an example
of this in section 4. We are seeking the optimal scheme for estimating the free parameter, θ .
Loosely, this amounts to specifying an input state, a measurement scheme and an estimator
that will permit one to gain the most information about θ , and we will now proceed by making
this notion of optimality more precise.

Firstly, the deviation of our estimate from the actual value of the parameter can be
measured by

δθ ≡ θest − θ. (7)

It is natural to consider the estimation scheme that minimizes the variance of this estimation
error as the optimal one. That is, we want to minimize 〈(δθ)2〉. Braunstein and Caves consider
a similar problem in [3], and we will follow their treatment in order to find the optimal scheme.

As mentioned in the introduction, this optimization problem can be split into two
subproblems: (i) the choice of an optimal input state ρ0 and (ii) the choice of an optimal
scheme (choice of {E(ξ)} and T) to estimate from the one-parameter family of the output
states ρ(θ) = E(ρ0). In this paper, we will not consider the first subproblem; we will assume
that the input state is fixed and focus on the optimization of the estimation scheme. The
second subproblem, the optimization of the estimation scheme, can be further broken down
into two steps: first, a minimization of the error variance over estimators T for a given quantum
measurement and second, a minimization over all quantum measurements. The optimization
over the estimators is an entirely classical one; it is well known in the statistical inference
literature and results in the famous Cramér–Rao bound [21]:

〈(δθ)2〉 � 1

NF(θ)
, (8)

where N is the number of measurement results used in the estimation and F(θ) is the Fisher
information:

F(θ) ≡
∫

dξ p(ξ |θ)

(
∂ ln p(ξ |θ)

∂θ

)2

=
∫

dξ
1

p(ξ |θ)

(
∂p(ξ |θ)

∂θ

)2

. (9)

The Fisher information represents the amount of information about θ contained in the
measurement result ξ . The dependence of this quantity on the choice of quantum measurement
is clear from the fact that p(ξ |θ) = tr(E(ξ)ρ(θ)). Strictly, this form of the bound is only valid
for unbiased estimators. As we will only consider such estimators, we will not state the more
general form of the bound here.

The Cramér–Rao bound effectively takes the estimator out of the picture. It says that for
a given input state and measurement (i.e. for a given p(ξ |θ)), the variance is lower-bounded
by the quantity on the right-hand side of equation (8). Thus, subproblem (ii)—the estimation
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on the parametric family of output states—simplifies to finding the best measurement: the
one that minimizes this lower bound, or equivalently, maximizes the Fisher information. As
an aside, under mild regularity conditions on p(ξ |θ) the lower bound in equation (8) is an
asymptotically achievable one, that is, there exist estimators that can attain this bound as
N → ∞, and an example is the maximum likelihood estimator [22]. The estimators that
achieve this bound have been extensively studied in the field of statistical inference; therefore,
we will not consider them here but will rather concentrate on the quantum aspects of the
problem.

Given the Cramér–Rao bound, the next step of the optimization becomes a maximization
of equation (9) over all possible quantum measurements. We express this maximization, and
the result, by

F ∗(θ) ≡ max
{E(ξ)}

F(θ). (10)

2.2.1. A geometric perspective. Before treating this maximization, we examine the process
estimation problem from a geometric perspective. The one-parameter family formed by the
output of the process for a fixed input state, {ρ(θ)}θ , defines a curve in density operator
space which is parametrized by the continuous, real parameter θ . The curve is itself a
manifold defined by ρ0 ≡ |ψ0〉〈ψ0| and Eθ , and the advantage of regarding members of
{ρ(θ)}θ as outputs of a quantum process represented by its Kraus decomposition is that
we can define a natural local coordinate patch at each point on the curve1. That is,
ρ(θ) = ∑

k ϒk(θ)|ψ0〉〈ψ0|ϒ †
k (θ) = ∑

k |ek(θ)〉〈ek(θ)|, where |ek(θ)〉 ≡ ϒk(θ)|ψ0〉 are
unnormalized vectors. Now if we exclusively use the canonical decomposition for the
process, this can be rewritten as an eigendecomposition of ρ(θ):

∑
k pk(θ)|fk(θ)〉〈fk(θ)|,

where |fk(θ)〉 = 1√
pk(θ)

|ek(θ)〉 and 〈fj (θ)|fk(θ)〉 = δjk . The set {|fk(θ)〉} can be considered
a local orthonormal coordinate basis at the point θ on the curve. A point to note is that
while we write the eigendecomposition as a sum over k, the number of Kraus operators in the
canonical decomposition, it does not mean that ρ(θ) has the same number of eigenvectors as
the number of Kraus operators are there in the Kraus decomposition. ρ(θ) can have at most
d eigenvectors, where d is the dimension of the system, while there is no limit on the number
of Kraus operators. In the canonical decomposition, ϒk(θ)|ψ0〉 = 0 for some values of k, and
these terms will drop out in the eigendecomposition sum.

The Fisher information can be used to define a Riemannian metric on this curve
(submanifold) that measures the statistical distinguishability of neighbouring one-parameter
quantum operations given the fixed input state |ψ0〉. To see this, we go back to the definitions
above and note that the Cramér–Rao bound (8) is a lower bound on the variance in the
error when estimating the parameter θ . Thus, it is a lower bound on the error in reliably
distinguishing between two neighbouring quantum operations: Eθ and Eθ+dθ . Therefore, as in
[3], we can consider it a distinguishability metric along the curve of one-parameter quantum
operations defined by |ψ0〉 and Eθ . More formally, let us establish min[

√
N〈(δθ)2〉1/2] to

be a measure of statistical deviation.
√

N removes the improvement in estimation due to
increased sampling, and the minimization is over measurement schemes to ensure that we
are considering the most discriminating scheme. A statistical measure of distinguishability
should be proportional to the inverse of this deviation measure, i.e. the more the deviation, the
less distinguishable neighbouring operations become. Thus, we can define a distinguishability

1 Here, we have assumed that the input state is pure. We will see below that the optimal input state will always be a
pure one, and therefore this assumption is justified.
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metric along the curve as

ds2 = dθ2

min[N〈(δθ)2〉] . (11)

(ds/dθ)2 is well known as the statistical distance [3], and using equation (8), we can rewrite
it in terms of the Fisher information as(

ds

dθ

)2

= max
{E(ξ)}

F(θ) = F ∗(θ). (12)

This is exactly the maximization we are considering for optimal estimation. Note that it is
only over the measurement POVMs ({E(ξ)}) because this is the statistical distance over a
curve defined by a particular input state. A caveat is required here; when we refer to F ∗(θ) as
being the metric on the curve, this is strictly only true if it can be shown that the bound set by
F ∗(θ) can be achieved. This question of achievability will be important in the following.

3. The optimization

As outlined in section 2.2, the procedure of finding the best estimation scheme can be phrased
as a sequence of optimizations. The first optimization, which is entirely classical, results in the
Cramér–Rao bound, and in this section we shall examine the quantum aspects of the problem.

3.1. Optimal estimation on the output family

The optimal quantum measurement scheme is the set of POVMs that maximize the Fisher
information, for a fixed input state. Using the definition of the Fisher information, equation (9),
and the fact that p(ξ |θ) = tr(E(ξ)ρ(θ)), we get

F ∗(θ) = max
{E(ξ)}

∫
dξ

(tr[E(ξ)ρ ′(θ)])2

tr[E(ξ)ρ(θ)]
, (13)

where ρ(θ) ≡ Eθ (ρ0) = ∑
k ϒk(θ)ρ0ϒ

†
k (θ) and ρ ′(θ) = ∂ρ(θ)/∂θ . Let {ϒk} be the Kraus

operators for an arbitrary Kraus decomposition of E . Now, the next logical step would be
to replace ρ(θ) and ρ ′(θ) by their definitions in terms of the Kraus operators that define
the quantum operation. However, this makes the maximization of (13) difficult due to the
introduction of the Kraus decomposition sum in the numerator. Instead, we will take a step
back and use the dilation of the quantum operation.

As mentioned in section 2.1, a quantum operation can be thought of as a unitary map of
the system plus some environment after which the environment is traced out. Given this, we
will label our system A and the environment B, and define

ρA(θ) = Eθ

(
ρ0

A

) =
∑

k

ϒk(θ)ρ0
Aϒ

†
k (θ)

= trB{U(θ)[ρ0
A ⊗ |e0〉B〈e0|]U †(θ)}, (14)

where U(θ) is some unitary operator acting on systems A and B, and ρ0
A is the input state on

subsystem A. The mapping between U(θ) and {ϒk(θ)} is not unique because of the freedom
in choosing the environment basis states, and we will return to this point shortly. Also,

ρ ′
A(θ) = trB

{
U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ) + U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †′(θ)

}
= trB{�(θ) + �†(θ)}, (15)

where U ′(θ) = ∂U(θ)/∂θ and �(θ) = U ′(θ)
[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ).
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Now we return to the problem of maximizing (13). Substituting (14) and (15), we get
(in the following, we will use EA(ξ) ⊗ IB and EA(ξ)IB interchangeably to denote the same
operator)

∫
dξ

(trA{EA(ξ) trB{�(θ) + �†(θ)}})2

trA
{
EA(ξ) trB

{
U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}}
=

∫
dξ

(trA{trB{(EA(ξ)IB)(�(θ) + �†(θ))}})2

trA
{

trB
{
(EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}}
=

∫
dξ

(tr{(EA(ξ)IB)�(θ) + (EA(ξ)IB)�†(θ)})2

tr
{
(EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}
= 4

∫
dξ

(Re tr{(EA(ξ)IB)�(θ)})2

tr
{
(EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}
� 4

∫
dξ

|tr{(EA(ξ)IB)�(θ)}|2
tr

{
(EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}

= 4
∫

dξ

∣∣tr {
(EA(ξ) ⊗ IB)U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}∣∣2

tr
{
(EA(ξ) ⊗ IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

} .

We proceed by applying the Cauchy–Schwarz inequality: |tr(O†P)|2 � tr(O†O) tr(P †P),
with equality when O = λP for some constant λ. We will apply this inequality to
the numerator, where O† = (EA(ξ)IB)1/2U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]1/2

and P = [
ρ0

A ⊗
|e0〉B〈e0|

]1/2
U †(θ)(EA(ξ)IB)1/2, to get

F(θ) � 4
∫

dξ
tr

{
EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}
tr

{
(EA(ξ)IB)U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †(θ)

}
× tr

{
(EA(ξ)IB)U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †′(θ)

}
= 4

∫
dξ tr

{
(EA(ξ) ⊗ IB)U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †′(θ)

}
= 4 tr

{
U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †′(θ)

}
= 4 trA trB

{
U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
]
U †′(θ)

}
= 4 trA

{∑
k

ϒ ′
k(θ)ρ0

Aϒ
†′
k (θ)

}

= 4 tr

{∑
k

ϒ
†′
k (θ)ϒ ′

k(θ)ρ0

}
, (16)

where we have dropped all subscripts in the last line because all operators are in subsystem A,
and the completeness relation

∫
dξE(ξ) = Id has been used.

We have arrived at a bound on the Fisher information:

Cϒ(θ) ≡ 4 tr

{∑
k

ϒ
†′
k (θ)ϒ ′

k(θ)ρ0

}
. (17)
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This bound is equal to the maximum, F ∗(θ), if it is achievable. To achieve the bound we
need to saturate the two inequalities used in the derivation. The condition for meeting the first
inequality is

Im tr{(EA(ξ) ⊗ IB)�(θ)} = 0

⇐⇒ Im trA

{
E(ξ)

∑
k

ϒ ′
k(θ)ρ0ϒ

†
k (θ)

}
= 0

⇐⇒ Im tr

{∑
k

ϒ
†
k (θ)E(ξ)ϒ ′

k(θ)ρ0

}
= 0 ∀ξ.

(18)

The condition for meeting the Cauchy–Schwarz bound is

(EA(ξ) ⊗ IB)
1
2 U ′(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
] 1

2

= λξ (θ)(EA(ξ) ⊗ IB)
1
2 U(θ)

[
ρ0

A ⊗ |e0〉B〈e0|
] 1

2 ∀ξ,

where the constant λξ (θ) can generally depend on ξ and θ .
We would like a condition is terms of the Kraus operators instead of the unitary U. To do

this, multiply from the left by an identity in the form IA ⊗ ∑
k |ek〉B〈ek| to get∑

k

[
E(ξ)

1
2 ϒ ′

k(θ)ρ
1
2

0

]
A

⊗ |ek〉B〈e0| = λξ (θ)
∑

k

[
E(ξ)

1
2 ϒk(θ)ρ

1
2

0

]
A

⊗ |ek〉B〈e0| ∀ξ

⇐⇒ E(ξ)
1
2 ϒ ′

k(θ)ρ
1
2

0 = λξ (θ)E(ξ)
1
2 ϒk(θ)ρ

1
2

0 ∀ξ, k, (19)

where the last step uses the orthogonality of |ek〉B . Equation (19) defines a series of conditions
that the optimal measurement must satisfy. In general, k runs from 1 to d2 where d is the
dimension of the state space of ρ, and therefore we see simply from the number of constraining
equations that the optimal measurement is severely restricted.

We can reduce these two conditions to one by substituting (19) into the statement for the
first condition (18)

Im tr

{∑
k

ϒ
†
k (θ)E(ξ)ϒ ′

k(θ)ρ0

}
= 0 ∀ξ

⇒ Im tr

{∑
k

ϒ
†
k (θ)E(ξ)λξ (θ)ϒk(θ)ρ0

}
= 0 ∀ξ

⇒ Im λξ (θ) tr ρ(θ)E(ξ) = 0 ∀ξ. (20)

Now, because the trace in the last line is always real, this condition is met if and only if λξ (θ)

is real. Therefore, to summarize, the optimal measurement scheme must satisfy the conditions

E(ξ)
1
2 ϒ ′

k(θ)ρ
1
2

0 = λξ (θ)E(ξ)
1
2 ϒk(θ)ρ

1
2

0 ∀ξ, k, (21)

where λξ (θ) is a real number that can depend on ξ .
Condition (21) is a condition on the optimal measurement POVM and the optimal input

state. However, although it defines the optimal strategy, it is not a constructive condition.
Except for special cases (that we will outline below), it is difficult to define the optimal
measurement in terms of {ϒk} and ρ0 from the above condition. We will say more about the
satisfiability of these conditions and thus the achievability of the Fisher information bound
below.

We conclude this subsection by noting that an immediate consequence of the form Cϒ(θ)

is that a pure input state, ρ0 ≡ |ψ0〉〈ψ0|, is optimal; this follows from the linearity of trace,
the concavity of density operators and the positivity of the operator 
 ≡ ∑

k ϒ
†′
k (θ)ϒ ′

k(θ).
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3.2. Uniqueness and achievability

We derived a bound on the Fisher information above, and here we will discuss the uniqueness
and achievability of this bound. These are both important questions because the achievability
makes the bound meaningful (and means that Cϒ(θ) can be viewed as a metric on the
curve formed by the parametrized output family) and the uniqueness makes it useful as a
characterization of optimality.

The Fisher information bound we have in equation (17) is non-unique because the Kraus
operators of the quantum operation are not unique. For each choice of Kraus decomposition,
the value of Cϒ(θ) provides a possibly different upper bound to the Fisher information. So a
natural question is: how does changing the Kraus decomposition modify the bound?

Let both {ϒk(θ)} and {�k(θ)} be the Kraus operator sets for Eθ . Then from section 2.1
we know that these two sets are related by a unitary transformation

�k(θ) =
∑

j

ujk(θ)ϒj (θ), (22)

where ujk(θ) are the elements of a unitary matrix, which crucially can also depend on θ . Now,
the Fisher information bound C�(θ) for the Kraus operator choice {�k(θ)} in terms of the
Kraus operators {ϒk(θ)} is

C�(θ) = 4 tr

{∑
k

�
†′
k (θ)�′

k(θ)ρ0

}

= 4
∑

k

tr





∑

j

u∗′
kjϒ

†
j +

∑
j

u∗
kjϒ

†′
j


 (∑

l

u′
klϒl +

∑
l

uklϒ
′
l

)
ρ0




= 4


∑

jkl

u∗
kjukl tr

[
ϒ

†′
j ϒ ′

l ρ0
]

+
∑
jkl

u∗′
kju

′
kl tr

[
ϒ

†
jϒlρ0

]

+
∑
jkl

u∗′
kjukl tr

[
ϒ

†
jϒ

′
l ρ0

]
+

∑
jkl

u∗
kju

′
kl tr

[
ϒ

†′
j ϒlρ0

] . (23)

From this expression it is clear that this bound, C�, can be made as large as desired by
appropriately choosing the unitary matrix [uij (θ)]. In particular, it can be made to diverge by
choosing [uij (θ)] that is discontinuous in θ . Therefore, the sensible thing to consider is the
minimum value of this bound, that is, the minimum of equation (17) with respect to a choice
of the Kraus operators.

The second issue to be addressed is the achievability of the bound. Let the Kraus
decomposition be fixed; then to show the attainability of the bound, we must show that there
always exists some POVM {E(ξ)} that can meet the optimality conditions of equation (21).
This attainability is a subtle task, as was pointed out by Barndorff-Nielsen and Gill in [5].
They show that in general, the optimal choice of a POVM is dependent on the actual value of
the unknown parameter θ , which means that in practice, an adaptive strategy that narrows in
on the value of θ has to be used [5]. Only in some special cases [10] does one strategy achieve
the bound uniformly over θ . We will refer to an estimation strategy that is optimal at some
value of θ , but possibly not at other values of θ as a locally optimal strategy.

Therefore, to give the bound Cϒ(θ) a unique meaning, we would ideally like to identify
the Kraus decomposition that minimizes the bound and show that the optimal measurement
conditions containing operators from this decomposition can be met by some POVM. That
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is, we want to minimize Cϒ(θ) over the Kraus operators for a channel, while stipulating that
the optimality conditions (21) are met (locally, or globally). At this stage we do not have a
method of performing this optimization for the general case, but in the next section we carry
it out for a special family of quantum channels.

3.3. A special case: the quasi-classical process

In this section, we identify a special case where the issues of uniqueness (or equivalently,
minimality) and attainability of the bound in equation (17) can be settled. For this case, we
are able to show that the appropriate Kraus operators to use in calculating Cϒ(θ) are the ones
forming the canonical Kraus decomposition induced by the fixed input state.

Consider a one-parameter quantum process Eθ and input state ρ0 = |ψ0〉〈ψ0| with
canonical decomposition Eθ (ρ0) = ∑

k ϒk(θ)ρ0ϒ
†
k (θ). As mentioned in section 2.1,

this decomposition is characterized by the orthogonality of the Kraus operators according
to an inner product based on the particular state ρ0: Eθ (ρ0) = ∑

k ϒk(θ)ρ0ϒ
†
k (θ) with

tr
(
ϒ

†
k (θ)ϒj (θ)ρ0

) = δjkpk . Now, assume an additional orthogonality constraint on the

canonical decomposition: tr
(
ϒ

†
j (θ)ϒ ′

k(θ)ρ0
) = µk(θ)δjk, µk ∈ R. In terms of the local basis

on the curve, this constraint can be written as 〈ej (θ)|∂θek(θ)〉 = µk(θ)δjk , which implies
〈fj (θ)|∂θfk(θ)〉 = µ̃k(θ)δjk where µ̃k ∈ R also. Note that this additional constraint specifies
a quasi-classical model where the eigenbasis of the output density operator remains the same
for all θ , and it is only the eigenvalues that change along the curve, i.e. a locally orthogonal
basis can also be considered a globally orthogonal basis along the curve. The output density
operators {ρ(θ)}θ form a commuting parametric family. In the following, we prove the
attainability and uniqueness of the Fisher information bound for this special case.

Theorem 1. Attainability: for the quasi-classical model, the optimality conditions

E(ξ)
1
2 ϒ ′

k(θ)ρ
1
2

0 = λξ (θ)E(ξ)
1
2 ϒk(θ)ρ

1
2

0 ∀ξ, k, (24)

where {ϒk} are members of the canonical decomposition, can be met with a locally optimal
strategy.

Proof. We will prove this by explicitly constructing the POVM that meets these conditions.
Consider the optimality conditions when the input state is a pure state |ψ0〉:

Ejϒk(θ)′|ψ0〉 = λj (θ)Ejϒk(θ)|ψ0〉
Ej |∂θek〉 = λj (θ)Ej |ek〉

Ej

(
p′

k(θ)

2
√

pk(θ)
|fk(θ)〉 +

√
pk(θ)|∂θfk(θ)〉

)
= λj (θ)

√
pk(θ)Ej |fk(θ)〉

(25)

for all j, k (we are now assuming that the POVM has a discrete number of elements and
are thus using a discrete index j ). Now consider the choice Ej = |fj (θ)〉〈fj (θ)| for the
POVM; the completeness condition on POVMs is automatically satisfied because {|fj 〉} are
eigenstates of a Hermitian operator and therefore span the space. Given this choice of POVM,
the optimality conditions become(

p′
k

2
√

pk

+
√

pkµ̃k − λj

√
pk

)
|fk〉δjk = 0, (26)

where we have suppressed θ because all quantities depend on it. This condition can be satisfied
for all j, k by the choice λk = µ̃k + p′

k/2pk = µk/pk , and thus in this special case we can
construct the optimal POVM. However, note that this choice, Ej = |fj (θ)〉〈fj (θ)|, presumes
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knowledge of θ and therefore can only be implemented adaptively [5]. As mentioned above,
given the set {|fj (θ̃)〉} for some θ̃ , the additional constraint, 〈fj (θ)|∂θfk(θ)〉 = µ̃k(θ)δjk ,
ensures that this set remains orthogonal for all θ . Despite this, the POVM has to be adapted
during the estimation because the normalization of the elements of the set varies with θ . �

Theorem 2. Uniqueness: for the quasi-classical model, the minimum of the Fisher information
bound of equation (17) over the valid Kraus decompositions is achieved by the canonical
decomposition.

Proof. Firstly, by the preceding theorem, we know that for the quasi-classical model the
optimality conditions can be satisfied for the canonical Kraus operators, that is, some POVM
set {E(ξ)} can be found such that conditions (21) are satisfied for the canonical Kraus operators,
and thus the bound is achievable. Now, let Cϒ denote the Fisher information bound when the
canonical Kraus decomposition is used. We will show the value of the bound using any other
Kraus decomposition, i.e. C� is larger than Cϒ . Consider C� as given in equation (23). Using
the identities

∑
k u∗

kjukl = δjl and tr
(
ϒ

†
k (θ)ϒj (θ)ρ0

) = δjkpk , we can rewrite this expression
as

C�(θ) = 4


∑

j

tr ϒ
†′
j ϒ ′

j ρ0 +
∑
jk

|u′
kj |2pj

+
∑
jkl

u∗′
kjukl tr

[
ϒ

†
jϒ

′
l ρ0

]
+

∑
jkl

u∗
kju

′
kl tr

[
ϒ

†′
j ϒlρ0

] . (27)

Note that the first term is simply the Fisher information bound for the canonical Kraus
decomposition, Cϒ , and the second term is always positive. Hence, we see that the question
of whether C� � Cϒ depends on the sign of the third and fourth terms, i.e. we are interested
in the sign of

G(θ) ≡
∑
jkl

u∗′
kjukl tr

[
ϒ

†
jϒ

′
l ρ0

]
+

∑
jkl

u∗
kju

′
kl tr

[
ϒ

†′
j ϒlρ0

]
. (28)

To determine this, use the optimality conditions of equation (21) to get rid of the derivatives
within the trace. Explicitly, insert a resolution of identity of the form

∫
dξE(ξ):

G(θ) ≡
∑
jkl

u∗′
kjukl tr

[
ϒ

†
j

∫
dξE(ξ)ϒ ′

l ρ0

]
+

∑
jkl

u∗
kju

′
kl tr

[
ϒ

†′
j

∫
dξE(ξ)ϒlρ0

]

=
∫

dξ λξ (θ)
∑
j l

tr
[
ϒ

†
jE(ξ)ϒlρ0

] ∑
k

(u∗′
kjukl + u∗

kju
′
kl)

= 0, (29)

where the second line follows from the optimality conditions equation (21) and the third line
follows from taking the derivative of the orthonormality condition on the elements of the
unitary matrix [uij (θ)]. Therefore,

C�(θ) = 4


∑

j

tr ϒ
†′
j ϒ ′

j ρ0 +
∑
jk

|u′
kj |2pj


 � Cϒ(θ) ∀θ,

and the minimum of equation (17) for the quasi-classical model is achieved by the canonical
Kraus decomposition. �
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For this quasi-classical model, we can truly say that Cϒ(θ) = F ∗(θ) (where {ϒk} form
the canonical decomposition) and hence we have a measure of the statistical distance along
the curve formed by the one-parameter family of output states. In fact, we can express this
metric on the curve explicitly in terms of the local coordinate system set up by the Kraus
decomposition:(

ds

dθ

)2

= F ∗(θ) = 4
∑

k

〈∂θek(θ)|∂θek(θ)〉

=
∑

k

(pk(θ)′)2

pk(θ)
+ 4

∑
k

pk(θ)|〈fk(θ)|∂θfk(θ)〉|2. (30)

This result has operational significance. It means that if the input state and quantum
channel are such that the output family is a mutually commuting one, then the optimal
estimation scheme can be identified and the statistical distinguishability be calculated easily.

4. Examples

In this section we will consider several examples to illustrate the results of the previous
sections.

4.1. Qubit depolarization channel

The qubit depolarization channel is defined as

ρ(p) = D(ρ) = p
I

2
+ (1 − p)ρ

= (1 − p)ρ +
p

3
(XρX + YρY + ZρZ), (31)

where ρ is a density matrix in a Hilbert space of dimension 2 and X, Y,Z are the Pauli
matrices. This channel can be best understood by examining its action on the Bloch sphere
representation of a qubit; it has the effect of uniformly shrinking the Bloch sphere towards the
centre. The parameter to estimate is the rate of this shrinking, parametrized by 0 � p � 1.

From the definition of the channel, it is clear that {ρ(p)}p forms a commuting family.
Thus, we can use the canonical decomposition of the channel to analyse its estimation.

The unitary invariance of this channel (spherical symmetry in the Bloch sphere picture)
implies that all pure state inputs will perform identically when it comes to estimation
performance. Therefore, choose |ψ0〉 = |0〉, the +1 eigenstate of Z. The canonical
decomposition of the channel with respect to this initial state is

ϒ1(p) = i

√
p

6
X +

√
p

6
Y ϒ2(p) = q√

q + p

3

I +
p

3√
q + p

3

Z

ϒ3(p) =
√

p

6
X + i

√
p

6
Y ϒ4(p) = −

√
q

p

3
p

3 + q
I +

√
q

p

3
p

3 + q
Z,

(32)

where q = 1 − p. The optimality conditions of equation (21) are easily seen to be satisfied
by projective measurements onto the Z-basis, i.e. the POVM {|0〉〈0|, |1〉〈1|}. The statistical
distance for this channel with the input state |ψ0〉 = |0〉 is given by F ∗(p) = 6

p(9−6p)
, which

can be achieved uniformly by the estimation strategy of measuring each output in the Z-basis.
Note that this bound diverges at p = 0, but not at p = 1. This is because at p = 1 we still
cannot distinguish perfectly between the action of the three Paulis with one qubit.
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Figure 2. Estimating quantum channels using entanglement. If Eθ is a quantum operation acting
on operators in a Hilbert space of dimension d, then dim(|ψ〉) is at least d2.

It is a well-known fact that using entanglement can improve estimation [13, 23]. To
compare the performance of a scheme that uses entanglement to the one that does not, we
can compare the statistical distinguishability for the two cases. Consider the estimation of the
depolarizing channel using a maximally entangled state as the input into the channel I ⊗ D;
see figure 2. This is a common setup for estimating channels because it can be shown that
the output state completely characterizes the channel [24]. The canonical decomposition of
the channel I ⊗D with respect to the maximally entangled input state |ψ0〉 = 1√

2
(|00〉 + |11〉)

consists of the Kraus operators:

ϒ1(p) =
√

1 − p I ⊗ I ϒ2(p) =
√

p/3 I ⊗ X

ϒ3(p) =
√

p/3 I ⊗ Y ϒ4(p) =
√

p/3 I ⊗ Z.
(33)

Given this, it is easy to show that the optimality conditions of equation (21) can be satisfied by
a POVM formed by projectors onto the Bell basis2. Note that if the singlet state |φ−〉 is used as
the input state, then the measurement scheme need only discriminate between the singlet and
triplet subspaces to be optimal. The statistical distance in this case is F ∗

e (p) = 1
p(1−p)

.
Figure 3 plots the two values of statistical distance and clearly shows the improved
distinguishability of the parameter (uniformly across p) that the entanglement-assisted
scheme affords.

This example illustrates the effect of using entanglement for estimation; it can have the
advantage of increasing the statistical distinguishability of channels. It also illustrates the
ability of this formalism to treat entangled input states and non-local measurements. Such
scenarios simply change the definition of the channel to a suitable tensor product of single
party channels, while the statistical distance and optimality conditions retain their form.

4.2. Estimation of pure T2 qubit dephasing time

There has been considerable interest recently in accurately estimating single qubit T2 relaxation
times for various quantum computing architectures [25–27]. Such estimations have also been
commonplace in the NMR community for several decades now. We can use the formalism
developed above to investigate the schemes used for estimating T2.

If we restrict the dynamics to be purely dephasing, we can model the single qubit
channel as

dρ

dt
= γ (ZρZ − ρ), (34)

2 The Bell states are four maximally entangled states of two qubits: |ψ+〉 = 1√
2
(|00〉 + |11〉), |ψ−〉 =

1√
2
(|00〉 − |11〉), |φ+〉 = 1√

2
(|01〉 + |10〉), |φ−〉 = 1√

2
(|01〉 − |10〉). These four states span the Hilbert space of

two qubits and are therefore called the Bell basis. The symmetric subspace of two-qubit Hilbert space is spanned by
the triplet states |ψ±〉 and |φ+〉, and the anti-symmetric subspace is spanned by the singlet state |φ−〉.
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Figure 3. Statistical distinguishability of the depolarizing channel with and without the use of
entanglement during estimation. The values of F ∗ at p = 0 and F ∗

e at p = 0, 1 are not plotted
because the quantities diverge at those points.

where γ is the dephasing rate and the parameter we are trying to estimate. A Kraus
decomposition for this process is

ρ(θ) = DZ(ρ) = 1 + e−2θ

2
ρ +

1 − e−2θ

2
ZρZ, (35)

where θ = γ t is a simple transformation of the parameter we want to estimate. In the
following, we will denote the single-qubit equal superposition states by |+〉 = 1√

2
(|0〉 + |1〉)

and |−〉 = 1√
2
(|0〉 − |1〉). Note that these are eigenstates of the operator X and thus will be

collectively referred to as the X-basis.
The standard techniques for estimating T2 times are based on the spin echo [28] pulse

sequence which is essentially the preparation of a |+〉 or |−〉 initial state and then a measurement
in the X-basis after the channel has acted. This pulse sequence actually has added features
designed to nullify bulk sample inhomogeneities, but the basic idea is as mentioned. It is
easy to check that given this input state, equation (35) is the canonical decomposition for this
channel and also that the output family {ρ(θ)}θ is a mutually commuting one. Thus, we can
use the operators in the canonical decomposition to determine the optimality of this scheme
by checking the optimality conditions (21), which turn out to be

(e−2θ + λj (θ)[1 + e−2θ ])E1/2
j |+〉 = 0

(e−2θ − λj (θ)(1 − e−2θ ))E
1/2
j |−〉 = 0

(36)

for all j , where we are using a discrete number of POVMs indexed by j . These two conditions
can be met by a measurement in the X-basis, that is, with a POVM {E+ = |+〉〈+|, E− =
|−〉〈−|}. The choices required for λ are λ+ = −1/(e2θ + 1) and λ− = 1/(e2θ − 1). So we
see that the standard spin echo technique of estimating single qubit pure dephasing time, T2,
is indeed an optimal one for an X-basis input state.
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Again, it is possible to show that using entanglement helps in the estimation of the
parameter θ for this channel. However, a channel extension of the form I ⊗ DZ does not
increase the statistical distance; instead, a channel extension of the form DZ ⊗ DZ must be
used with a maximally entangled state.

4.3. The random shift channel

The random shift channel is defined by the master equation

dρ

dt
= γ

(
UβρU

†
β − ρ

)
, (37)

where γ is a real, positive constant and Uβ is a unitary operator: U = e−iβH for some
continuous spectrum Hermitian operator H and some real number β. A Kraus decomposition
for this channel is

�k(θ) = θk/2

√
k!

e−θ/2Uk
β , k = 0, 1, 2, . . . , (38)

where θ = γ t . These equations describe a channel that delivers a Poisson distributed number
of unitary displacements (or unitary ‘kicks’) by β to the input state. The average number of
kicks in a time t is given by θ = γ t and is the parameter we are estimating.

The way to optimally estimate the unitary version of this channel ρ → UβρU
†
β is to use

the fact that H is a generator of translations in some basis [7, 11]. That is, if |x〉 is an eigenstate
of an operator conjugate to H, then U |x〉 = e−iβH |x〉 = |x + β〉. Then the optimal scheme is
to input a fiducial state |x0〉 and to use a POVM that is formed from projectors onto translated
versions of this state {|x〉 : |x〉 = Uβ |x0〉, β ∈ R} (〈x|x ′〉 = δ(x − x ′)). For example, if
H = p̂, the momentum operator (and hence U is a spatial translation), then we would choose
E and ρ0 to be projectors onto position eigenstates.

Since Uβ is simply a representation of an Abelian group and UβUβ ′ = Uβ+β ′ , we would
expect the optimal scheme for estimating the random shift channel to be the same as that for
estimating the unitary shift channel. Note that when the input state is a fiducial state |x0〉,
which is translated by Uβ , the Kraus operators given by equation (38) form the canonical
decomposition. Additionally, the model is quasi-classical because the output family is a
commuting one. Therefore, we can check the optimality of using the unitary channel estimation
scheme for estimating the random shift channel by examining the optimality conditions with
the canonical Kraus operators. �k(θ)′ = (− 1

2 + k
2θ

)
�k(θ), and when the input state is |x0〉,

the optimality conditions become(
−1

2
+

k

2θ
− λξ (θ)

)
E1/2(ξ)�k(θ)|x0〉 = 0 ∀ξ, k. (39)

Now, choosing E(ξ) ≡ E(x) = |x〉〈x|, we get(
−1

2
+

k

2θ
− λx

)
δ(x − (x0 + kβ))|x〉 = 0 ∀x, k. (40)

The left-hand side is zero except when x = x0 + kβ, and in that case we can choose
λx = 1

2 − x−x0
2θβ

, so that the left-hand side goes to zero in all cases. Therefore, as in the
unitary case, using a POVM formed of projectors onto shifted states is optimal when the
input is an element of this same set. The statistical distance for this estimation scheme is
F ∗(θ) = 1/θ .
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Figure 4. The beam splitter interpretation of the damping channel.

4.4. The damping channel

As our final example of a one-parameter quantum process, we consider the harmonic oscillator
damping channel (DC). This is a quantum process described by the master equation

dρ

dt
= γ

(
âρ̂â† − 1

2
(â†âρ + ρâ†â)

)
, (41)

where â† and â are creation and annihilation operators for a harmonic oscillator mode, and
γ is a real, positive constant. This channel describes the effects of random photon loss. An
operator sum decomposition for this process can be obtained by expanding the above master
equation as a Dyson series and solving. This yields the following Kraus operators:

�k(θ) = (1 − e−θ )k/2

√
k!

e− θ
2 â†â âk, k = 0, 1, 2, . . . , (42)

where θ = γ t is the parameter to be estimated for this channel. Note that the state space of
ρ(θ) is infinite dimensional and there is also an infinite number of Kraus operators.

One interpretation of this quantum operation is that it describes the transformation of a
state when combined with the vacuum at a beam splitter (see figure 4). That is, the state of
mode a after the beam splitter is given by

ρ̃a = trb U(φ)(ρa ⊗ |0〉b〈0|)U †(φ),

where U(φ) = exp(−φ(â†b̂ − âb̂†)) is the beam splitter unitary transformation with â and b̂

being the annihilation operators for modes a and b, respectively. Evaluating this trace gives the
same CP map as the damping channel with e−θ replaced by cos2 φ, the intensity transmittance
of the beam splitter. Therefore, our estimation task is equivalent to the estimation of the
transmittance of a beam splitter.

A common method for probing such a channel would be with a Fock (photon number)
state |ψ0〉 = |N〉, where N = 0, 1, 2, . . . is the number of photons in the mode. Similarly,
common measurement techniques at the channel output would be photodetection, heterodyne
or homodyne measurements.

To determine the optimal measurement strategy when the photon number states are used
as input, we again confirm that firstly, the Kraus decomposition defined by equation (42)
is indeed the canonical one when number states are used and, secondly, that the channel is
quasi-classical with such input states. Therefore, we can decide on the optimal POVM by
looking at the optimality conditions equation (21). �′

k(θ) = (
ke−θ

2(1−e−θ )
− 1

2 â†â
)
�k(θ), and

hence the conditions become

k e−θ

2(1 − e−θ )
E1/2(ξ)�k(θ)|N〉 − 1

2
E1/2(ξ)â†â�k(θ)|N〉 = λξ (θ)E1/2(ξ)�k(θ)|N〉, (43)
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for all ξ and k. We can simplify this by applying all operators except E(ξ) to the input state.
Note that for k > N the application of �k(θ) yields zero and the condition is trivially satisfied.
For k � N we have the condition that for all ξ ,(

k e−θ

2(1 − e−θ )
− N − k

2
− λξ (θ)

)
E1/2(ξ)|N − k〉 = 0. (44)

To satisfy this we can choose E(ξ) ≡ E(M) = |M〉〈M|, a number state projector, which
corresponds to photodetection. This choice requires λM = Ne−θ −M

2(1−e−θ )
. Therefore, the best

strategy for estimating the damping channel when the Fock states are used as input is to perform
photodetection at the output. The statistical distance for this scenario is F ∗

N(θ) = N
eθ−1 , and

hence larger N at the input makes the process more distinguishable.

4.5. A comment on estimation

In all the examples considered above, except the random shift channel, we are trying to
estimate a continuous parameter with experiments that have discrete outcomes. This may
seem peculiar, but the situation is clarified by the observation that the parameter is always a
continuous function of the probabilities of the discrete outcomes (or rather, the probabilities
are functions of the parameter). Therefore, from the point of view of the estimator, the
problem is the same as estimating the parameter of a probability distribution from independent
experiments that sample that distribution. This is a well-known estimation problem in classical
estimation theory, and a maximum likelihood estimator [22] would be a practical estimator
that would also achieve the Fisher information bound asymptotically.

5. Conclusion

We have investigated the problem of optimally estimating a general one-parameter quantum
process. We have attempted to obtain characterizations of estimation optimality in terms of a
common representation of quantum processes, the Kraus decomposition. We derived a bound
on estimation accuracy and conditions of optimality when the input state is fixed; however, the
non-uniqueness of the Kraus decomposition causes this bound to be non-unique. It also makes
proving the achievability of the bound difficult. However, we have shown that in the special
case of a quasi-classical channel, the issues of uniqueness and attainability can be settled, and
in this special case, the characterization of optimal estimation (with a fixed input state) we
derived is useful in determining the statistical distinguishability of quantum processes.

Representing a quantum process in terms of its Kraus decomposition has the advantage
that it is often easy to do; however, in view of the above treatment, this representation is
difficult for characterizing optimal estimation strategies because of its non-uniqueness. The
immediate direction in which this work could be extended is to investigate the possibility of
settling the issues of attainability and uniqueness for a general quantum channel. In particular,
explicit expressions for the optimal POVM from the optimality conditions equation (21), for
a fixed set of Kraus operators, would be extremely useful.
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